Exam: Introduction to Condensed Matter Theory

Thursday, April 4, 2019
The total number of points is 50. Do not forget to write your name and the student number on

the first sheet. Good luck.

1. Average ion density in a cubic crystal Consider a crystal with a Bravais lattice formed by
ions of mass M. The coordinate operator of the n-th ion in the crystal is X, = X + Q,,
where Qn, is the displacement of the ion from its minimial-energy position, X,g ). For a

harmonic lattice,
<e~ik.Qn> eV (1)

where W = 1 (k- Q,)?) is the Debye-Waller factor.

(a) Show that for crystal with a simple cubic lattice

1

W=k (Q%). )

[2 points]
Hint: Use SYmmetry arguments.

(b) Calculate the mean square displacement, (Q?') , at zero temperature in the Debye model
with the phonon dispersion, @, = vq, for all phonon polarizations, A = 1,2,3. Ex-
press the result in terms of the Debye frequency, @wp. [4 points]

Hint:
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(c) The density operator of point-like ions at a point « is formally defined as

=Y o0 X) )

Show that the average ion density in a crystal with a simple cubic lattice is given by

(i(x)) Zfa: X, )) (5)



with
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Hint: How about calculating first the average Fourier transform of the ion density,

i = /d3xe_ik'mﬁ(az),

[4 points]

and then inverse Fourier transform?

Useful relations: 2k2 +ib-k=5(k+ i%)2 + % and fj: dxe % = \/g.

2. Elastic energy of lead molybdate: The crystal lattice of lead molybdate (wulfenite, see
Fig. 1), PbMoOy, belongs to the tetragonal crystal class 4 /m (Cyp,). The generators of the

point group are the 90°-rotation around the z axis, 4, = (—y,x,z), and the horizontal mirror,

mz; = (xaya _Z)'

(2) Is PbMoOy invariant under the following symmetry operations? Explain your answer.
i. 2, = (—x,—y,z) (180°-rotation around the z axis) [1 point]
ii. my = (x,—y,z) (y-mirror) [1 point]
iii. I = (—x,—y,—z) (inversion) [1 point]
(b) Give the most general expression for the harmonic lattice energy of this tetragonal

crystal in terms of the components of the strain tensor ugg. [7 points]

3. Spin waves in a ferromagnetic chain: Consider a spin chain with the Hamiltonian
H:Z{ JSh Sn+1——( 22 N%Sﬁ,} , J,K,u3¢ >0, (7)
n

Where S,, denotes spin at the site n with the coordinate X, = na, a being the lattice constant.
The first, second and third terms in Eq.(7) describe, respectively, ferromagnetic exchange
interactions, single-ion anisotropy and Zeeman energy (A is the magnetic field applied in
the 7 direction). The anisotropy term with K > 0 favors spins paralle] or antiparallel to the 7

axis.



FIG. 1: Wulfenite.

(a) Using the Dyson-Maleev transformation from spin to boson operators,

Sy =8 —iS, = /28a],
T
S =Si+iS; = V25 (1- %% ) an, (8)

S¢ = S—alay,

find the magnon energy, &, as a function of the magnon wave vector k, for S > 1.

[7 points]

Hint: In the S>> 1 limit, the fourth-order terms in the boson operators a, and a, can
be neglected. S-Sy = S385 + % (S;“S; +SI_S;“). Write the boson Hamiltonian in the

—ikX,

momentum space. ay = ﬁ Y, e g,

(b) Find the two first terms of the expansion of & in powers of (ka)?, for ka < 1. Explain

why the magnon spectrum has a gap. [3 points]

4. Tight-binding model with a longer range hopping: Consider a conducting chain de-

scribed by the Hamiltonian,

H= —Z Z Innt+m (C;ZGCner,O' + cthm’Gcno-) , 9)
no mz#0

where ¢, ¢ is the operator annihilating electron with the spin projection ¢ =1,/ at the site

n. The hopping amplitude decreases exponentially with the distance between the sites:

tppim = toe” Pem=Xal — goo=xalml o — 4 p 1o (10)



where a is the lattice constant, X;,, = na is the coordinate of the site n and x is the inverse

hopping range.

(a) Find the energy, &, of electron with the wave vector k. Try to express & in terms of

elementary functions. [6 points]

Hint: Re-write the Hamiltonian (9) in terms of the Bloch wave operators, cig:

Cko — \/— Ye CnG>
(11)
1 ik Xn
Cho — TNZk "% Ckos
where N is the total number of lattice sites. To perform the summation over the hopping

distances, do it separatly for positive and negative m.

(b) Near the bottom of the electron band,

Rk
& ~ &+ , for |kla<1, (12)
2m

*

where m, is the effective electron mass. Find m, and discuss the two limiting cases:
Ka>> 1 and xa < 1. [4 points]
Hint: For ka > 1, it is convenient to introduce the nearest-neighbor hopping ampli-

tude, 1] = tge” *°.

5. Kramers-Kronig relations, plasmon and sum rule

(2) The real and imaginary parts of the dielectric susceptibility, ¥ (@) = x'(®) +ix"(®),
satisfy

)= rr[ 4t

where P/ is the principal value integral. What is the physical origin of this relation?

(13)

[1 point]

(b) Prove that the Kramers-Kronig relation (13) can be re-written as the principle value

integral over positive frequencies:

A . (14)

[3 points]
Hint: How x"(— ) is related to ¥ (®)?



(c) Show that the imaginary part of the dielectric susceptibility of metal, x”(®), obeys the

sum rule,

where @, 1s the plasmon frequency. [6 points]

Hint: Use asymptotic form of the dielectric function, (@) = 1 +4nx(®), of metal at

high frequencies.



